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The Contensou model of combined dry friction [1] is considered. The problem of integrating the shear stresses over the contact 
area is solved in terms of elementary functions, unlike the solution in [1], reduced to elliptic quadratures. The problem of the 
rolling of a homogeneous sphere over a plane with dry friction is investigated. © 1999 Elsevier Science Ltd. All rights reserved. 

The problem of the rolling of an absolutely rigid body over a surface, with different assumptions regarding 
the nature of the interaction between them at the contact point, has been solved by many researchers. 
A detailed description of the present state of the problem and an extensive bibliography can be found 
in [2]. 

An analysis of the publications on the subject leads to the conclusion that the solution of this problem, 
when the interaction at the contact point is described by dry-friction forces, is unsatisfactory. Here we 
must distinguish between two types of formulations of the problem: (1) it is assumed that the dynamic 
reactions in the tangential plane at the contact point do not exceed the starting-friction forces, which 
means that no slippage occurs at this point and hence leads to a non-holonomic relation; (2) slippage 
is allowed, but its relation to the corresponding reactions is taken in a simplified form. The unsatisfactory 
nature of both formulations arises from the fact that there are insufficient references to the well-known 
dry-friction hypothesis (Coulomb's hypothesis) for writing down the conditions at the contact. Coulomb's 
hypothesis for a point contact have not been formulated, and the conditions which are usually written 
for it are in fact new hypotheses which do not depend on Coulomb's hypothesis. 

Contensou [1] attempted to consider this problem accurately, starting from the natural assumption 
that, for actual bodies, there is no point contact. According to Hertz's theory of contact stresses, bodies 
take an elliptic form over the area, at different points of which the slippage is also different. Using 
Coulomb's hypothesis for an elementary area in side the contact region and integrating over the whole 
region, Contensou also derived the conditions which a rolling body must satisfy by virtue of this 
hypothesis. Unfortunately, these conditions are expressed in terms of non-elementary functions, which 
obviously also explains the lack of problems which have been solved with the same conditions (with 
the exception of the problem of the Fleuriais gyroscope, which was solved by Contensou himself). 
Nevertheless, these conditions contain important features, as a result of which the formulations of 
problems in a simplified form are untenable. 

We show below that Contensou's theory allows of a considerable simplification, and its results can 
be represented in a form which is convenient for solving specific problems. 

1. T H E  M O D E L  O F  D R Y  F R I C T I O N  B E T W E E N  B O D I E S  I N  C O N T A C T  

As in [1], we will assume that the contact between the body and the surface obeys Hertz's contact- 
stresses theory, described, for example, in [3], and that both contact surfaces are locally spherical. In 
this case contact occurs over a small circular area of radius e. This radius depends on the modulus of 
elasticity of the materials, the applied load N and the radii of curvature of the surfaces at the contact 
point. The distribution of the normal contact stresses is given by the formula 

3N /1 p2 

where p is the distance from the centre of the contact circle to the point at which the normal stress a 
is defined (Fig. 1). 
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Fig. 1. Fig. 2. 

We will assume that the relative slippage between the two bodies in the contact area is made up of 
two simple motions: translational slippage with a velocity u and pure rotation (pivoting) with angular 
velocity co. 

The relative velocity at an arbitrary point is perpendicular to the radius vector of this point, drawn 
from the instantaneous centre of velocities. The elementary friction force is opposite to this velocity 
and is proportional to the normal stress ts with a coefficient of proportionality equal to the coefficient 
of dry frictionf. I dF I = ofdxdy. 

Integrating the projection of the elementary force dE" onto the x axis over the whole area, we obtain 
the value of the force of sliding friction along the x axis 

Ff =f]~ ffcosOdxdy (1.1) 

It is clear from symmetry considerations that the integral of the projection of the elementary force 
onto they  axis is equal to zero, so that (1.1) is the modulus of the principal vector of the tangential 
friction forces acting at the contact area. 

The double integral (1.1) was expressed in [1] in polar coordinates tO, p, in which each of the 
components of the integrals has the form of an elliptic integral. This was the basis for the assertion 
made in [1, 2] that (1.1) cannot be expressed in terms of elementary functions. 

In fact, this is not so. Integral (1.1) can be expressed in terms of elementary functions if we write it 
in 0, r variables (we further introduce the variable q = r/e) 

Ff=3Nf°f QI(O, k)dO, Qn(e, k)=qS 4-q 2 +2qkcose+l-k2q',dq 
~g 0 q_ 

sinO* = ~ . l h = g t o l o ,  q+ =kcosO+~/1-k2sin20, k = h l ~  

(1.2) 

= 3Nf =[ Ff 2~ ~) QI(O" k)dO 

Both of these integrals can be evaluated in terms of elementary functions 

[ • 2  ~tk(4-k2), k ~< 1 

Ff [~-~[4k2(4-k2)O + 4 ( k 2 + 2 ) ' ~ - - 1 ] ,  k > l  
= N f × ~  3 (1.3) 

The expression for the friction force has the form (1.2) if the instantaneous centre of velocities is 
outside the contact area, i.e. when k > 1. If k <~ 1, we have instead of (1.2) 
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A graph of the function F/(k) (1.3) is shown in Fig. 2. 
It can be verified that both the first derivative of the function/7: and the function itself are continuous 

at the point k = 1. Note also the behaviour of the function (1.3) for small and large k 

To use the friction law (1.3) in problems of the dynamics of rolling rigid bodies, a fractional-linear 
approximation of function (1.3) (the Pad6 approximation) is the most convenient, since this preserves 
the derivative at zero and the limit at infinity 

3nk 3nv 
F/= Nf 8 + 3rdc = Nf 8eto+ 3xv (1.4) 

Function (1.4), which accurately gives the qualitative relationship between the friction force and the 
slippage velocity t) and the pivoting velocities co, approximates function (1.3) quantitatively fairly well 
also. 

Contensou [1] confined himself to calculating the principal vector of the friction forces. However, 
for a complete representation of the conditions at the contact it is also necessary to calculate the principal 

h moment of these forces about the. centre of the contact area'. M/= Mf - hF,f. where M~f is the principal 
moment of the forces about the instantaneous centre of velocities 

These integrals can also be easily evaluated 

3Nf~ x ~(8- 8k 2 + 3k4), k ~ I 
128' [2[(8-8k2 +3k4)O" +3(2-k2) k~-l ,  k>l (1.5) 

Function (1.5) is shown in Fig. 2. Like the function (1.3) it is continuous at the point k = 1. 
The Pad6 approximation, which preserves the value at zero and the behaviour at infinity of the moment 

of the pivoting friction, has the form 

3 ff, NfE 3ffaVf~2 ¢o 
M~ = 16+15nk = 16eto+15~o (1.6) 

The expressions obtained for the sliding friction force (1.3) and (1.4) and the moment of the pivoting 
friction (1.5) and (1.6), based on the use of Coulomb's dry friction hypothesis, enable us to draw the 
following conclusions, which are fundamental when using them in problems of the dynamics of rolling 
bodies. 

1. Sliding friction and pivoting friction are not independent of one another. The sliding friction force 
F/is a function of both the sliding velocity t) and the angular pivoting velocity co. The moment of pivoting 
fTiction M/is also a function of these two arguments. Hence it follows that the conditions, often employed, 
in which these components are independent of one another, are speculative and bear no relation to 
Coulomb's dry-friction model. 

2. The idea of starting friction, characteristic for the one-dimensional Coulomb friction model, does 
not apply in general. For any non-zero pivoting velocity co, sliding friction F/behaves like viscous friction 
in the neighbourhood of slow sliding velocities. A similar situation also occurs for pivoting friction Mr. 
For this reason such a well-known example of non-holonomic mechanics as the problem of the rolling 
of body without slipping at the contact point is based on an incorrect representation of the laws of dry 
friction in complex motion. In fact, Coulomb dry friction cannot lead to a non-holonomic relation. 

3. The functions (1.3)-(1.6) have no limit at the point o = co = 0. This means that, without a priori 
information on the natureof the rolling, any further simplification of models (1.4) and (1.6) is impossible. 

This big difference in the manifestation of dry friction, based on Coulomb's hypothesis, from those 
simplified representations of it which occur in innumerable solved problems on the rolling of rigid bodies, 



708 V.G. Zhuravlev 

and which do not follow from Coulomb's dry-friction hypothesis, naturally lead to a distorted repre- 
sentation of the behaviour of the bodies in these problems. In those cases when the results of the 
problems solved with these conditions allow of an experimental check, it turns out that experiment 
contradicts the theory. 

A more careful analysis of the friction conditions undertaken by Contensou [1], was similarly 
stimulated by the lack of agreement with some of the known models (the absence of slippage, leading 
to a non-holonomic formulation or the presence of slippage with the one-dimensional model of dry 
friction) and the multiply repeated experiment with Fleuriais gyroscope. 

The problem of the rolling of a homogeneous sphere under dry-friction conditions, defined by (1.4) 
and (1.6), investigated below, leads to results which differ considerably from existing results for this 
problem (see, for example, [2]). 

2. R O L L I N G  W I T H  D R Y  F R I C T I O N  O F  A H O M O G E N E O U S  H E A V Y  
S P H E R E  A L O N G  A H O R I Z O N T A L  P L A N E  

The equations of motion of a homogeneous sphere of radius R and mass m (Fig. 3) 

Job=M, mi:=F; Jf~mR 2 

will be considered in the projections onto fixed axes. 
We will express the velocity of a point on the sphere, coinciding with the centre of the contact point 

V x =i t -ROSy,  Oy = y + R t ~  x (2.1) 

using polar variables 

- -  2 2 u - ~ ~ O ,  cosot=u~,/v, sina=Vy/U (2.2) 

From (1.4) we obtain the following expressions for the components of the force F 

Fx=-Fcostx ,  F .v=-Fsina;  F =  3ruVfo (2.3) 
851 o z I + 3 g v  

The components of the moment of the friction forces acting on the body around its centre are 

Mx=RFy, My=-RF x, M~= 3n'NfE2¢°~ (2.4) 
16e I to z I +15gv 

The last component is written using (1.6). 
The complete system of equations of the dynamics of the rolling of a body with dry friction is 

Fig. 3. Fig. 4. 
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S6x=RF,, J6 =-M  
(2.5) 

,,a = 6,  my=  

taking (2.1)-(2.4) into account. 
System (2.5) depends solely on the velocities (angular and linear) and is independent of the variables 

which define the position and orientation of the body. It will henceforth be more convenient to change 
from the variables cox, %, coz,.t,.~ to the variables COx, %, u, v, ct, using (2.1) and (2.2), and also to put 
u = Rco z and I.t = e/R. If, after this, we make the replacement of the time t --> x = (3rdVf/(2m))t, Eqs 
(2.5) in the new variables reduce to the form 

dm x = 5u sinct d¢oy 5u cosct 
dx R(8~t I u I +3xu ) '  dx R(8~t I u I +3nu ) 

du = 592u d.._uu = 7u do~ = 0 
dx 16p. I u I +151tu ' dx 81a I u I +3xv ' a'x 

(2.6) 

Hence, it quickly follows that the direction of the relative velocity of slippage does not change during 
the motion of the sphere: ot --= const. Without loss of generality, we can assume that a --- 0, which gives 
cox = const and 7R% + 5u = const. 

Hence, the solution of the system of five equations has been reduced to the solution of two equations 
in the variables u and o. If the latter is solved, all the remaining ones are found in quadratures 

o ~ y = - ~ ( c o n s t - 5 u ) ,  x =  j (2u+const)dt ,  y =  yo - Rtoxt 

We will first investigate the behaviour of the system qualitatively. To do this we write the equations 
of  the integral curves in the u, u plane 

dv  70 (16~t I u I +15/tu ) 
du 51~2u(8t.t I u I +3~u ) 

The integral curves are shown in Fig. 4. 
Henceforth, without loss of generality, it is sufficient to consider the case u t> 0. The following system 

with an elliptic right-hand side has exactly the same integral curves 

d...uu = _51.t2u(8g u + 37tu ), do = -7v (16~tu + 15•u ) (2.7) 

for which all the curves reach equilibrium positions after an infinite time in the variable 13. The relation 
between the independent variables 13 and x is given by the equation 

x = S (161.tu + 157tu )(8~tu + 3nu )dl] (2.8) 
0 

System (2.7) has the particular solution u = u(1)/13, u = o(1)/13. The behaviour of all the other solutions 
of this system u - 1/13, u - 1/13 as 13 -~ oo is the same. Hence it follows that integral (2.8) converges as 
13 -+ oo. This means that all the integral curves of system (2.6) in the (u, u) plane arrive at the point u 
= u = 0 after a finite time. Hence, the slippage velocity u and the pivoting velocity coz = u/R 
simultaneously vanish. The angular velocity toy becomes constant from this instant. Further motion 
consists of rolling without sliding along a straight line with constant linear and angular velocity, and 
the angular velocity lies in the (x, y) plane and is perpendicular to the linear velocity. 

An analytical solution of system (2.6), which is interesting during the finite time interval during which 
slippage occurs, can be constructed by changing to canonical coordinates of the similarity group u 
u' = au, u ~ u' = au which, as can easily be seen, is the group symmetry of  system (2.6). The 
corresponding replacement (u, u) ~ (q,p) ,  where q = u/u ,p  = In u, leads to an equation with separable 
variables. 

The whole problem has thereby been reduced to quadratures. 
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The analytical solution can be simplified considerably using the smallness of the dimensionless 
parameter ~t = e/R by finding a solution in the form of appropriate asymptotic forms in It. 
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